Random Homoclinic Orbits
نویسنده
چکیده
We introduce random homoclinic points and orbits for random dynamical systems with hyperbolic stationary orbits and investigate their meaning for irregular behaviour in form of a stochastic version of the Birkhoo-Smale Theorem. In particular we show that transversal random homoclinic points cause a conjugacy of the random dynamical system in a part of the phase space to a random shift system.
منابع مشابه
Homoclinic orbits of invertible maps
In this paper, we present a systematic method for finding all homoclinic orbits of invertible maps in any finite dimension. One advantage of this method is that it can also be used to order and classify all the homoclinic orbits, using symbolic dynamics, if a certain criterion is satisfied. We also present a more direct scheme, which quickly locates homoclinic orbits without, however, being abl...
متن کاملChaos in PDEs and Lax Pairs of Euler Equations
Recently, the author and collaborators have developed a systematic program for proving the existence of homoclinic orbits in partial differential equations. Two typical forms of homoclinic orbits thus obtained are: (1) transversal homoclinic orbits, (2) Silnikov homoclinic orbits. Around the transversal homoclinic orbits in infinite-dimensional autonomous systems, the author was able to prove t...
متن کاملSnaking of Multiple Homoclinic Orbits in Reversible Systems
We study N -homoclinic orbits near a heteroclinic cycle in a reversible system. The cycle is assumed to connect two equilibria of saddle-focus type. Using Lin’s method we establish the existence of infinitely many N -homoclinic orbits for each N near the cycle. In particular, these orbits exist along snaking curves, thus mirroring the behaviour one-homoclinic orbits. The general analysis is ill...
متن کاملHomoclinic orbits in a piecewise linear Rössler-like circuit
In addition to the well-known Rössler funnel that consists in near-homoclinic orbits, perfect homoclinic orbits have been found numerically and experimentally in a simplest piecewise linear Rössler-like electronic circuit. The evolution of the system in the homoclinic range exhibits period-bubbling and period-adding cascades when a control parameter is changed. A scaling law in the period-addin...
متن کاملGlobal pathfollowing of homoclinic orbits in two-parameter ows
The main goal of this paper is a global continuation theorem for homoclinic solutions of autonomous ordinary di erential equations with two real parameters. In one-parameter ows, Hopf bifurcation serves as a starting point for global paths of periodic orbits. B-points, alias Arnol'd-Bogdanov-Takens points, play an analogous role for paths of homoclinic orbits in two-parameter ows. In fact, a pa...
متن کامل